↓小特集:最近の話題を追って(Ⅰ)

スズウィスカーの成長機構

清 貴*

计

*石原薬品㈱(〒652-0806 兵庫県神戸市兵庫区西柳原町 5-26)

Growth Mechanism of Tin Whisker

Kiyotaka TSUJI*

*Ishihara Chemical Co., Ltd. (5-26, Nishi-yanagiwara-cho, Hyogo-ku, Kobe-shi, Hyogo 652-0806)

Keywords : Tin, Whisker, Growth Mechanism, Driving Force

1. はじめに

1940 年代初頭において通信機器のトラブルが多発したた め、その原因を調査したところ、コンデンサーの電極に施さ れた Cd めっきから針状のウィスカーが成長して、電極間が 短絡したためと判明してから、ウィスカーの問題が広く知ら れるようになった¹⁾。1950 年代には、Sn めっきをはじめ、 Zn めっきからもウィスカーが発生することが知られるよう になった²⁾。しかし、Arnold³⁾により、Pb を 3~10%含む Sn-Pb 合金めっきからはウィスカーが成長しないことが示さ れ、その後今日にいたるまで、電子部品の表面処理として同 めっきが多く採用されてきた。

ところが、最近では EU における RoHS 規制などにみら れるように、電子機器から鉛を排除する動きが拡がる中で、 ウィスカーの問題が、半世紀以上を経て再び注目されるよう になってきている。この問題については、多くの研究がなさ れてきたが、今のところウィスカー成長機構について、完全 に理解されるには至っていない。しかし、ウィスカー対策は 電子機器の信頼性を確保する上で、最も重要な課題の一つで あり、その成長機構の解明が急務となっている。

ここでは、これまでに報告された研究から、ウィスカーの 重要な特徴や、成長に影響を及ぼす要因についてまとめ、こ れまでに提出されているウィスカー成長のモデルを概観し、 それらの問題点について考えていくとともに、著者の考え方 も提示していく。

2. ウィスカーの特徴

2.1 形態および強度

ウィスカーはその根元から成長し⁴⁾,大抵の場合単結晶で, 全体がほとんど同じ太さの針状を呈している。直径は1~4 μ m,長さはその1000倍程度であり,最長9mmのものが確 認されている⁵⁾。Herringら⁶⁾はSnウィスカーの曲げ試験を おこない,通常のSnの最大降伏歪が約10⁻⁴であるのに対し, ウィスカーが10⁻²以上の弾性歪に耐えることを示した。こ れは、通常の金属では、その中に運動し得る転位が多数含ま れていて、容易に塑性変形するのに対し、ウィスカーの場合、 転位の数が極端に少なく、転位を全く含まない理想結晶の理 論強度に近い強度を持つためだと考えられている。実際、 LeBret ら⁷ は Sn ウィスカーを TEM で観察し、転位が含ま れていないことを報告している。このように、転位密度が極 端に低い理由としては、その成長過程の中に再結晶や結晶成 長過程が含まれているからと考えられる。後述のように、転 位の増殖や転位の運動により、ウィスカーの成長機構を説明 しようとする説が多く提出されているが、上記事実はこのよ うな説とは相容れるものではないと思われる。

2. 2 成長方向

ウィスカーはおおむね直線的に成長するが、中には捩れた ものや、キンクを有するものがある。また、報告されている Sn ウィスカーの成長方向を表1にまとめた^{7)~10}。これらか ら分かるように、ウィスカーの成長方向は、比較的低指数の 結晶軸と一致する。これらの成長方向が Sn の塑性変形にお けるすべり方向と一部一致することから、すべり、つまり転 位の運動がウィスカー成長の原動力であるとの考え方に根拠 を与えている。しかし、表1には Sn のすべり面、すべり方 向¹¹⁾ も記載したが、すべり方向と一致するウィスカーの成 長方向は [001] と [101] のみである点に着目することが必 要である(詳細後述)。

Baker¹²⁾によると,キンクしているウィスカーは,たと

表1 ウィスカーの成長方向と Sn のすべり方向

研究者	成長方向	文献
Ellis	[001], [100], [101], [111]	8)
Smith	[001], [100], [101], [111]	9)
Morris 他	[100], [210], [101], [001], [110]	10)
LeBret 他	[110], [103], [321]	7)
Sn の {すべり面} [すべり方向]: {110} [001] {100} [001] {100} [101] {101}		11)
{121} [101]		11/

えば [100] 方向から [101] 方向へと成長方向を変えるだけ で、キンクしている部分においても結晶が連続しているとい う。このことは、LeBret らⁿが TEM を用いて確認してい る。

一方,ウィスカーのように微細な構造物の場合,表面エネ ルギーが,その成長条件や構造自体を決定する重要な因子と なっていると考えられる¹³⁾。ウィスカーが上記のような低指 数方向に成長する場合,その側面は表面エネルギーの低い低 指数面で構成することができる。つまり,成長方向を軸とす る晶帯面群のうち,特に表面エネルギーの低い面で側面を構 成できる。このように一定の結晶学的な方向に成長するとい うことは,ウィスカーの表面エネルギーを最小化するための 結果であると考えられる。

3. ウィスカー成長に影響を及ぼす要因

3.1 外部応力の影響

Fisher ら¹⁴⁾は、鋼板上の Sn めっきにリング状のクランプ で外部応力を印加すると(17~52 MPa)、その周辺に著しく 多くの、しかも著しく速い成長速度(1500~10000 Å/s)で ウィスカーが成長することを示した。通常の条件下では 0.2~0.4 Å/s 程度^{15)~17)}と報告されているのに比較すると、 その程度が分かる。この Fisher らの実験結果は、Sn 原子が 圧縮応力の存在する場所からウィスカーの根元へ移動(拡散) することを示したことでも、重要な意味がある。

3.2 内部応力の影響

従来から多くの研究者により,めっき時に生成する内部応 力がウィスカー成長の駆動力と考えられてきた^{5),15),19),31)}。ま た,素地とSnめっき間の結晶不整合に起因する歪が,Sn めっき層の内部応力の源とも考えられてきた^{15),18),19)}。ウィ スカー成長は,そのような内部応力の緩和現象であると理解 されてきたのである。しかし,最近まで特にそのことが実証 されることはなかった。Tu(ら)^{17),20),21)}は、クォーツ上に成 膜したCuとSnの二層薄膜の界面において,X線回折法に よりSn側に圧縮応力が,Cu側に引張り応力が生成するこ とを示した。また,Tuは、この応力がSnとCuの界面に生 成する金属間化合物(以下IMC。室温の場合,Cu₆Sn₅が生 成する)とSn およびCuの密度の違いにより発生すると考え た(Sn,Cu,IMCの密度はそれぞれ,7.28,8.96,8.27g・ cm⁻³)。さらに,Tuは皮膜表面にたまたま存在する酸化膜 の破れ目から,圧縮応力に押し出されるようにして,ウィス カーが成長すると考えた。このモデルでは,酸化膜が全体と しては皮膜内の圧縮応力を支えていることになるが,Snの 酸化皮膜は精々100-200 Å²²⁾でしかなく,局所的にウィス カーを押し出すことができるほどの応力を支えられるとは考 えにくい。

Xu²³⁾は、Cuに直接Snめっきをした場合、光沢Sn、無 光沢Snのいずれも圧縮応力が観察され、一方Ni下地めっ きを施した場合は、いずれも引張り応力が観察されたと報告 している。Ni下地めっきはウィスカー成長を有効に抑制す ることが知られていることから、今日ではIMC生成に起因 する圧縮応力がウィスカーの駆動力と考えられるようになっ てきている。

3.3 サーマルサイクリングの影響

最近になって、サーマルサイクリングが著しくウィスカー 成長を促進することが知られるようになった^{24),25)}。Sn 皮膜 と素地金属の間の熱膨張係数(CTE)の差が大きいほど、こ のようなウィスカーが発生しやすいと考えられている。Sn, Cu, Alloy 42 (Fe-42 mass%Ni) \mathcal{O} CTE は そ れ ぞ れ 23.5× 10^{-6} , 17.0×10^{-6} , $4.3 \times 10^{-6} \text{ K}^{-1}$ \mathcal{C} \mathfrak{s} $\mathfrak{z}^{24),26)}$, $\operatorname{Sn} \geq \operatorname{Cu} \mathcal{O}$ CTEの差はあまり大きくはないが, Sn と Alloy 42 では非 常に大きくなっている。図1に素地が Alloy 42 の場合と, Cuの場合のサーマルサイクリング後の Sn めっきの表面状 態を示す。素地が Cu の場合ウィスカーは認められないが, Alloy 42 の場合多数のウィスカーが認められる。このよう な場合,素地とのCTEの違いにより生成される熱応力が, ウィスカー成長を駆動しているものと考えられる。ウィス カーの側面には、1回ごとのサイクルに対応するストライ エーションが認められ²⁵⁾, Sn めっき皮膜に圧縮応力が生成 する高温度側に保持されている間にウィスカーが押し出され るように形成されたことがわかる。つまり、圧縮応力による 粒界や粒内のすべり(転位の運動)によってウィスカーが形成 されると考えられる。

このようにして形成されるウィスカーは、自然に成長する ウィスカーとは形状や発生密度が著しく異なっている。自然 に成長するウィスカーのように、直線的に成長するものはほ とんど見られない。また、短いウィスカーが極めて多数現れ

(a) Alloy 42, $t = 6.8 \mu m$

(b) Cu, $t = 7.3 \mu m$

 図1 (a) Alloy 42 上および, (b) Cu 上の無光沢 Sn めっきのサーマルサイクリング後の 表面状態温度:-45°C/+85°C, 保持時間:1800s, サイクル数:1000 回 れていることを裏付けていると思われる。 圧縮応力によるすべり(つまり転位の運動)によってウィス カーの成長を説明しようとする考え方が根強くあるが,もし そうだとすれば、自然に成長するウィスカーもサーマルサイ クリングによって成長するウィスカーと同じ様相を呈してい なければならない。しかし、実際には両者は大きく異なって おり、自然発生するウィスカーには別のモデルが必要と考え られる。

のようなウィスカーが圧縮応力によるすべりによって形成さ

3. 4 Sn 皮膜構造の影響

408

無光沢 Sn めっきは,電析時において,いわゆる "幾何学 的選択(geometrical selection)"²⁷⁾ という機構にしたがって 成長すると考えられる^{13),28)}。このような場合,膜厚 t と皮膜 表面における粒子の半径 r_g との間には $r_g = k \sqrt{t}$ という関 係が成り立つ。ここで, k は定数を表す。つまり,膜厚が薄 くなるほど粒子半径は小さくなる。

著者²⁸⁾はウィスカーの半径と無光沢 Sn めっき(Cu 素地 上)表面の結晶粒の半径を調べ,図2に示す関係を得た。表 面結晶粒の半径は,ほぼ膜厚の平方根に比例し,無光沢 Sn めっきが"幾何学的選択"という機構にしたがって成長する ことが分かる。また,ウィスカーの半径は,ほとんど完全に 皮膜表面の結晶粒の半径に一致しているのが分かる。このこ とは,ウィスカーは皮膜表面に存在する結晶粒を核として成 長することを示唆している。言い換えれば,ウィスカーは皮 膜表面の結晶粒がその周辺から Sn 原子を吸収しながら,皮 膜の外側へ成長した結果,形成されるものと理解できる。

 0.5μ m以下の膜厚のSnめっきからは、ウィスカーは成 長しなかったと報告されているが¹⁶⁾、著者らの実験において も同様な傾向が確認された。すなわち、膜厚が 0.5μ mまで はウィスカーが発生したが、 0.2μ m以下の膜厚ではウィス カーは認められなかった。しかし、このことは膜厚とウィス カーの成長とが直接関係があるということを意味しない。上 記のように、ウィスカーはSn皮膜の表面結晶粒を核として 成長することから、膜厚が薄い場合、表面結晶粒のサイズが

4. 従来のウィスカー成長モデル

4.1 転位モデル

Eshelby²⁹⁾は、図3に示したように、金属の表面が、酸化 により負の表面エネルギーγを持っていると仮定する。通常, 物質は正の表面エネルギーを持っており、その物質が曲率を 持つ場合、その曲率の中心に向かう力が作用する。しかし、 もし表面エネルギーが負になるとすれば、また、図3のよう に,めっき表面に微小な突起が存在すれば,その突起の曲率 の外側に向かう力が作用し、その結果その突起を引き抜こう とする力が作用することになる。Eshelby はこの突起の直下 の表面に平行な面(b)上に, Bardeen-Herring 源が存在する と仮定している(Eshelbv 自身は, Frank-Read 源が存在す るとしているが、転位のバーガーズベクトル b が表面に垂 直方向だとしていることから見て、これは今日 Bardeen-Herring 源といわれるものを意味すると解される。)。 Bardeen-Herring 源とは,図4(a) に示したように,Sn原 子を吸収し, 空孔を放出して転位の上昇運動といわれる運動 により、ある大きさまで拡張し、一層の余分な原子面からな る転位ループを形成する。Bardeen-Herring源は、このよ うな転位ループを次々と生成する源と考えられている。次に, 図4(b)に示したように、上記の負の表面エネルギーによる 突起を引き抜こうとする力によって、この拡張した転位ルー プはバーガーズベクトル**b**の方向に運動を始める。これは 転位のすべり運動を意味する。そして、このループが表面の 突起の根元に達したとき、そこに新たな原子面が加わること になる。Eshelby はこのように, Bardeen-Herring の転位

-26-

ループが拡張とすべりを繰り返すことにより,ウィスカーが 成長すると考えた。

しかし、金属表面が酸化されて表面エネルギーが低下する ことはあっても、負になることは考えにくい。現在では、真 空中でもウィスカーが成長することが知られており³⁰⁾、表面 酸化のみを駆動力とするこの説には、この点からも難点があ る。しかし、Bardeen-Herring 源により一原子層ずつ成長 するというアイデアは、その後も転位モデルの基本的な考え 方として受け継がれていく。

Lindborg³¹⁾の場合,より具体的な皮膜の構造と関連させ たモデルを提唱している。ウィスカーの駆動力としては,電 析時に皮膜内に生成されるマクロ圧縮応力を想定している。 また,結晶粒界に Bardeen-Herring 源が存在するとし,マ クロ圧縮応力により次々と生成される転位ループがウィス カーに成長する結晶粒内に導入され,その結晶粒と同じ大き さまで拡張した後,通常の粒内のすべり,または粒界すべり によってめっきの表面方向に移動すると考えた。

一方 Lee ら³²⁾ は,Lindborg と Tu のモデルを折衷したモ デルを提案している。Lee らの場合,Cu と Sn の金属間化 合物が Sn の粒界に沿って優先的に形成されるため,Sn 皮 膜内に圧縮応力が生じると考える。このモデルでも Tu のモ デルと同様に,酸化膜の破れ目からウィスカーが成長すると 考えるが,その破れ目ができる原因として,個々の結晶粒の 方位差による,弾性的性質の異方性により,周囲に比べて表 面に対して垂直方向の歪がより大きい結晶粒において酸化膜 が破断すると考える。また成長機構としては,このモデルで も Bardeen-Herringの転位ループが増殖-拡張を繰り返す ことでウィスカーが成長すると考える。

これら転位モデルといわれる説によれば、針状のウィス カーが形成されることは説明できる。しかし、Bardeen-Herring 源により生成される転位ループは、バーガーズベク トル **b** の方向にしか移動することができないことに注意す る必要がある。転移ループの移動は塑性変形におけるすべり を意味し、Sn の場合すべり方向は [001] と [101] だけで

あり,それ以外の方向へのウィスカーの成長はこのモデルで は説明できない。さらに,しばしば観察されるキンクした ウィスカーも,このモデルでは説明が困難である。

4.2 再結晶モデル

Ellis ら³³⁾ や Furuta ら³⁴⁾ は、内部応力または外部応力が 誘発する再結晶がウィスカー成長の原動力と考える。通常, 再結晶は粒子成長という形で進行する。つまり、エネルギー (歪エネルギーや粒界エネルギー)的に有利な結晶粒が、隣接 する結晶粒を侵食しながら成長し,金属原子を再配列するこ とで歪を除去し(転位が含まれていればその転位も除去し), 結晶粒成長(粒界移動)することにより系全体の自由エネル ギーを減少させる。Ellis らによる再結晶モデルでは、図5 に示したように,再結晶粒が皮膜の内部で結晶粒成長しない で、皮膜の外側に向かって成長すると考える。この時、再結 晶の駆動力が結晶粒界の調整にではなく,外側に向かって結 晶を成長させるという形をとるためには、結晶粒界が移動し ないことが必要とされる。Ellis らは、膜厚が薄いことに よって結晶粒サイズが制限されることや,表面の酸化物に よって結晶粒界が固定されると考えた。このモデルによれば, 2.1節で触れたウィスカーの転位密度が非常に小さいことを よく説明することができる。さらに、キンクしたウィスカー や、すべり方向以外の方向への成長も、無理なく説明できる。 このことから,再結晶過程がウィスカーの成長過程の中に含 まれると考えることに、充分妥当性があるように思われる。 しかし,通常再結晶は転位や粒界による104~2×107Jm-3 (10⁻²~20 MPa)程度のエネルギーによって進行するが³⁵⁾, その程度のエネルギーがウィスカー成長を駆動できるかどう かは,検討を要する。

5. ウィスカー成長の駆動力とその起源^{28),36),37)}

ここで、ウィスカー成長の駆動力とその起源について考察 する。ここでは、ウィスカー成長を駆動しているのは、皮膜 内に含まれる過剰エネルギーだと考える。また、この過剰エ ネルギーを測る尺度を化学ポテンシャルとする。ウィスカー が成長するためには、周辺部からウィスカーへと Sn 原子が 拡散しなければならないが、その駆動力は濃度勾配ではなく、 化学ポテンシャルの勾配である。ここで、過剰化学ポテン シャル $\Delta\mu^*$ を $\Delta\mu^* \equiv \mu^a - \mu^0$ と定義する。 μ^a は過剰エネル ギーが存在する場所における Sn 原子の化学ポテンシャル、

図5 再結晶モデル

-27-

μ[°]は過剰エネルギーが存在しない場所における Sn 原子の化 学ポテンシャルである。ウィスカーは過剰エネルギーを解放 するために形成されるとすれば、その内部には過剰エネル ギーは存在しない。過剰エネルギーが存在する場所からウィ スカーへ Sn 原子一個が移動すると系全体の自由エネルギー は Δ*μ** だけ減少することになる。ただし、ウィスカーが成 長すると、その側面に新たな表面が形成されることになる。 したがって,その表面エネルギー分だけ系全体の自由エネル ギーは増加することになる。そこで, ウィスカーの形状が円 柱状と仮定し、その半径を rw,長さを lとすると、一本の ウィスカーが形成されることによる,系全体の自由エネル ギーの変化 ΔG は $\Delta G = 2 \pi r_w l \gamma_s - \pi r_w^2 l \cdot \Delta \mu^* / \Omega$ で与えられ る。ここで γ_{s} は Sn の表面エネルギー密度, Ω は Sn の原子 容を表す。一個の Sn 原子の自由エネルギー変化は $\Delta G \times \Omega/$ $\pi r_w^2 l$ で与えられるから、ウィスカーが生成することによる、 化学ポテンシャルの変化 Δμ^e は次式で与えられる。

 $\Delta \mu^{e} = \frac{2 \Omega \gamma_{s}}{\gamma_{w}} - \Delta \mu^{*}.$ Eq. 1

ここで-Δμ^eは、ウィスカーの生成による表面エネル ギーの増加を考慮にいれた、つまり個々のウィスカーの半径 に応じた個々のウィスカーの成長のための駆動力(これを有 効駆動力と呼ぶ)を与える。

ウィスカーが自然に成長するためには**, Eq.1**において $\Delta \mu^e$ が負になる必要がある。したがって,ウィスカーの臨 界半径 r^* において, $\Delta \mu^e = 0$ となる。Eq.1において $r_w = r^*$, $\Delta \mu^e = 0$ とすれば,

 $\Delta \mu^* = 2 \Omega \gamma_s / r^*$Eq. 2 なる関係が得られる。この式は、ウィスカーの臨界半径と過 剰化学ポテンシャルの関係を与える。つまり、**Eq. 2**を用い、 **3.4**節に示した臨界半径からウィスカー成長に要求される過 剰化学ポテンシャルを推定することができる。Sn の原子容 は、2.703×10⁻²⁹ m³であり、また Sn の表面エネルギー密度 は約0.7 Jm⁻² と考えてよいから²⁸⁾、 $\Delta \mu^* \cong 1 \times 10^{-22}$ J atom⁻¹が得られる。図6にこの値と**Eq. 1**から求めたウィ スカーの半径と有効駆動力の関係を示す。ウィスカーの半径

図6 ウィスカーの半径と有効駆動力の関係 点線は過剰化学ポテンシャルの値を少しずらせた場合を 示す。

の多くは1~数μmであり、同図から少なくとも上記の過 剰化学ポテンシャルの推定値が高すぎることはないといえる。

以上のように、過剰エネルギー(過剰化学ポテンシャル)が 推定できると、もしその起源が歪(応力)であるとすると、ど の程度の歪(応力)が必要かを推定することができる。著者²⁸⁾ は歪の過剰化学ポテンシャルへの寄与 $\Delta \mu^{s}$ が次式で与えら れることを示した。

 $\Delta \mu^{s} = \frac{E \cdot \varepsilon^{2} \cdot \Omega}{1 - \nu}.$ Eq. 3

ここで、 ϵ は歪、Eはヤング率、 ν はポアッソン比を表す。 Sn の E と ν はそれぞれ 4.99×10¹⁰ Nm⁻² および 0.357 で与 えられる³⁸⁾。また、歪と応力 σ の関係は、 $\sigma = E \cdot \epsilon/(1-\nu)$ で与えられる。

これらの式から, ウィスカー成長に要求される過剰化学ポ テンシャルに匹敵する応力は約400 MPaと計算される。Sn 皮膜中に観測される応力は10 MPa 程度であり^{23),32)}、またバ ルク材料としての Sn の降伏応力は 11 MPa といわれる³²⁾。 薄膜の降伏応力はバルク材料のそれより幾分高いといわれる が,400 MPa という高いマクロ応力が Sn 皮膜中に保持され るということはありえない。ここで少なくともいえることは, 観測されるマクロ応力はウィスカーの原因ではないというこ とである。しかし、一方において、観測されるマクロ応力は、 ウィスカーが成長したあとに残留する応力と考えることもで きる。その場合、降伏応力を超える応力はすべり、つまり塑 性変形によって解放されると考えられる。そのすべりの結果 がウィスカー成長と考えることもできる。しかし、そのよう なことが起こるとすれば、図1(a)に示したサーマルサイク リングの場合のように、いたる所にウィスカーが出現しなけ ればならない(その場合のウィスカーは、通常観察される ウィスカーよりずっと短いはずである)。TuやLeeらは, そのような矛盾を回避するため, Sn 皮膜表面の酸化膜の破 れ目のみからウィスカーが成長すると考えたのであろうが, 前述の通り, Sn の酸化膜は精々100-200 Åの厚さしかなく, Snの降伏応力を超えるような応力を支えるだけの強度はな 120

それでは、ウィスカー成長に必要な 400 MPa という応力 はどのように理解すればよいのだろうか。転位そのものは結 晶格子が局所的に大きく歪んでいる場所である。また, 粒界 や、格子間原子なども局所的に大きな歪エネルギーを持って いる。したがって、ウィスカー発生を引き起こす過剰エネル ギーの起源は、マクロ応力ではなく、このような原子レベル での大きな歪にあるのではないだろうか。Tu²¹⁾はWの マーカーを使い, Cu と Sn の二層薄膜間における相互拡散 では、Cuの方が優先的な拡散種であることを示した。その 場合,形成される金属間化合物のCu側にはカーケンダルボ イドが形成されることは良く知られている。それとは逆に、 上記の不均衡な拡散の結果, Sn 側には原子レベルで高い歪 エネルギーを持った Sn 原子が形成されると考えられる。そ してこのような Sn 原子が表面に存在する Sn めっきの結晶 粒の根元まで拡散し(この拡散は前記のように実効的駆動力 つまり化学ポテンシャルの差により駆動される),その結晶 格子に次々と組み込まれることによって、ウィスカーとなっ

て成長するのではないかと考えられる。ウィスカーが応力に よって皮膜の外に押し出されて形成されると考えるのではな く,表面にある Sn めっきの結晶粒が,高い過剰の化学ポテ ンシャルを有する Sn 原子を吸収し,結晶成長によってウィ スカーが形成されると考えるのである。

6. おわりに

3.4節および5章では著者の考え方を提示したが,これは 主に無光沢 Sn めっきについて得られた知見に基づいている。 ウィスカー成長のメカニズムは皮膜の構造と無関係ではない と考えられる。したがって,無光沢 Sn とは構造を異にする 光沢めっきからのウィスカー成長メカニズムは,ここで述べ てきたことを若干モディファイする必要があると思われる。 また,5章で述べた原子レベルで高い歪エネルギーを持った Sn 原子とは具体的にどういうものかということや,表面結 晶粒の内ウィスカーに成長する結晶粒がどのような条件を備 えたものなのかなど,今後に課題を残す。

(2007-4-27 受理)

文 献

- 1) H. L. Cobb; Monthly Rev. Am. Electroplater's Soc., 33, 28 (1946).
- 2) K. G. Compton, A. Mendizza and S.M. Arnold; *Corrosion*, 7, 327 (1951).
- 3) S. M. Arnold; Plating, 53, 96 (1966).
- 4) S. M. Arnold; Electrical Manufacturing, Nov., 110 (1954).
- 5) N. A. J. Sabbagh and H. J. McQueen; *Metal Finishing*, 3, 27 (1975).
- 6) C. Herring and J. K. Galt; Phys. Rev., 85, 1060 (1952).
- 7) J. B. LeBret and M. G. Norton; J. Mater. Res., 18, 585 (2003).
- 8) W. C. Ellis; *Transactions of the Metallugical Society of AIME*, **236**, 872 (1966).
- 9) H. G. Smith and R. E. Rundle ; *Journal of Applied Physics*, 29, 679 (1958).
- R. B. Morris and W. Bonfield ; *Scripta Metallurgica*, 8, 231 (1974).
- 11) C. S. Barret; Structure of Metals, 2nd Ed., p. 337, McGraw-Hill (1952).
- 12) G. S. Baker; Acta Metallurgica, 5, 353 (1957).
- K. Tsuji; Proceedings of AESF SUR/FIN 2003, p. 169 (2003).

- 14) R. M. Fisher, L. S. Darken and K. G. Carroll; *Acta Metallurgica*, **2**, 368 (1954).
- 15) 土肥信康,小幡恵吾;金属表面技術協会第47回学術講演大会 要旨集, p. 86 (1973).
- V. K. Glaznova and K. M. Gorbunova ; *Journal of Crystal Growth*, 10, 85 (1971).
- 17) K. N. Tu; Acta Metallurgica, 21, 347 (1973).
- 18) S. C. Britton: *Transactions of the Institute of Metal Finishing*, **52**, 95 (1974).
- 19) 土肥信康;酸性溶液からの光沢すずおよびすず-鉛合金電析 に関する研究,博士論文(1975).
- 20) K. N. Tu and R. D. Thompson ; Acta Metallurgica, 30, 947 (1982).
- 21) K. N. Tu; Materials Chemistry and Physics, 46, 217 (1996).
- 22) 石川誠一, 鈴木和彦, 熊谷淳一; 銅と銅合金, 44, 206 (2005).
- 23) C. Xu; Presentation Material of NEMI, NIST and TMS Workshop on Tin Whiskers (2003).
- 24) M. Dittes, P. Oberndorff, P. Crema and V. Schroeder; Proc. 5th Electronics Packaging Technology Conference, p. 183 (2003).
- 25) 岡田誠一, 樋口庄一, 安藤壽浩; 第13回 RCJ 電子デバイス信 頼性シンポジウム予稿集, (2003).
- 26) C. J. Smithells; Metal Reference Book, 4th Ed., p. 685, Butterworths (1967).
- 27) 上羽牧夫 編集;結晶成長のしくみを探る, p. 73, 共立出版 (2002).
- K. Tsuji; Proc. IPC/JEDEC 10th International Conference on Lead Free Electronic Components and Assemblies, p. 11 (2005).
- 29) J. D. Eshelby; Phys. Rev., 91, 755 (1953).
- 30) D. H. V. Westerhuyzen, P. G. Backes, S. C. Merrell and R. L. Poeschel; Proc. The 18th International Symposium for Testing & Failure Analysis, p. 407 (1992).
- 31) U. Lindborg; Acta Metallugica, 24, 181 (1976).
- 32) B.-Z. Lee and D. N. Lee; Acta Mater., 46, 3701 (1998).
- 33) W. C. Ellis, D. F. Gibbons and R. G. Treuting ; Growth and Perfection of Crystals, John Wiley, New York, p. 102 (1958).
- 34) N. Furuta and K. Hamamura ; *Jap. J. App. Phys.*, 8, 1404 (1969).
- 35) F. J. Humphreys and M. Hatherly; Recrystallization and Related Annealing Phenomena, p. 8, Pergamon (2002).
- 36) 辻 清貴; 表面技術, 57, 451 (2006).
- 37) 辻 清貴; 表面技術, 57, 529 (2006).
- 38) C. J. Smithells; Metal Reference Book, 4th Ed., p. 708, Butterworths (1967).